Considerations for Acceleration of Deuterons and He-3 in RHIC Waldo MacKay, BNL

& RHIC Spin Params for Diff. Species &

	p	${}_{1}^{2}\mathrm{H}^{+}$	${}_{1}^{3}\mathrm{H}^{+}$	${}_{2}^{3}\mathrm{He}^{+2}$
$M [{\rm GeV/c^2}]$	0.938272	1.875613	2.808921	2.808391
$\mu/\mu_{ m N}$	2.792847	0.857438	2.972962	-2.127498
G = (g-2)/2	1.792847	-0.142987	7.918171	-4.183963
$mc^2/G \; [{ m MeV}]$	523.3	-131117	354.7	-671.2
$(p/q)_{\rm inj}$ [Tm]	79.367	80.704	57.819	55.216
$U_{\rm inj} \ [{ m GeV}]$	23.812	24.267	17.560	33.226
$U_{\rm inj}/n \; [{\rm GeV}]$	23.812	12.134	5.853	11.075
$\gamma_{ m inj}$	23.379	12.938	6.251	11.831
$G\gamma_{ m inj}$	45.500	-1.850	49.500	-49.500
$(p/q)_{\text{max}}$ [Tm]	833.904	833.904	833.904	833.904
$U_{\rm max} \; [{ m GeV}]$	250.000	250.005	250.014	500.004
$U_{\rm max}/u \; [{\rm GeV}]$	250.000	125.003	83.338	166.668
$\gamma_{ m max}$	266.447	133.293	89.007	178.039
$G\gamma_{ m max}$	477.699	-19.059	704.773	-744.910

& Trajectory and Spin through Snakes &

Machine Advisory Committee Review Waldo MacKay 15 September, 2010

2d plots by V. Ranjbar

Scaling RHIC Snake for Deuterons

$$B_{\text{out}} = 33.5 \text{ T}$$
 $B_{\text{in}} = 101.6 \text{T}$

Trajectory for 250 GeV ²H⁺.

$$B_{\rm d} = \frac{G_{\rm p}\gamma_{\rm p}}{G_{\rm d}\gamma_{\rm d}}B_{\rm p} = \frac{477.7}{-19.06}B_{\rm p}$$

Even if we could build these magnets, we couldn't inject.

Problem with deuterons in RHIC

- G is too close to zero for deuterons.
- Snakes not strong enough to do anything.
 - At top energy 250 GeV helix precession angles $\approx B^2$.
 - Strength $\sim \frac{4 \text{ T}}{100 \text{ T}} \sim 0.16\%$.
 - Tracking gives a snake strength of 0.06%.
- For more \$\$\$ perhaps we might get be able to build a 30 m long large aperture partial snake with a strength of a few percent?
- AC dipole to flip at strong intrinsic resonances probably not practical.
- Spin rotators have the same scaling problem as snakes.
- Bottom line: Polarized deuterons in RHIC will be very hard.

& RHIC snakes with He-3 at injection &

• Injection: U = 33.226 GeV

• Aperture looks fine: $\Delta y < 3$ cm.

& Rotators and D0-DX Bends for protons &

Rotator's spin vector at injection energy

Rotator's spin vector at 250 GeV

$$E = 25 \text{ GeV}$$

D0DX: 10° precession

D0DX: 100° precession

& Comparison of Rotators for ³He and p &

• Rotators easier to rotate vertical spin into any direction in horizontal plane.

& Intrinsic Resonances in RHIC &

$$|G\gamma|_{\text{max}} = \begin{cases} 478, & \text{p} & (250 \text{ GeV}) \\ 745, & ^{3}\text{He} & (500 \text{ GeV}) \end{cases}$$

Note: DEPOL calculations do not include snakes and rotators.

& Intrinsic Resonances in AGS &

$$|G\gamma|_{\text{ext}} = \begin{cases} 45.5, & \text{p} \\ 49.5, & {}^{3}\text{He} \end{cases}$$

Extract below the $\nu_{\rm sp} = 60 - Q_{\rm v} \sim 51$ resonance. AGS has a 12-fold superperiodicity

4 He3 Spin Resonances in Booster

• Intrinsic resonances:

$$0 + \nu$$
: $|G\gamma| = 4.54$ with $\varepsilon = 0.11$ $K = (\gamma - 1)mc^2 = 239$ MeV $12 - \nu$: $|G\gamma| = 7.46$ with $\varepsilon = 0.009$

- Can extract just before 12ν .
- Injection will be at $|G\gamma| = 4.187$ which is below $0 + \nu$
- There are also the imperfection resonances at 5, 6, and 7 to contend with.
 - More harmonic corrections.
 - Do we need an ac dipole or lower extraction energy?

	$U/\mathrm{n}[\mathrm{GeV}]$	γ	$G\gamma$	$p/q[{ m Tm}]$
Booster inj	1.030	1.100	-4.6036	2.150
AGS inj	1.678	1.793	-7.5000	6.968
RHIC inj	11.075	11.831	-49.5000	55.216
RHIC max	166.668	178.039	-744.9100	833.904

• ${}^{3}\text{He}^{+2}$, like heavy ions, injects into RHIC below transition: $\gamma_t \simeq 22.9$.

& AGS to RHIC transfer line &

b)

₹ 12 →

Waldo MacKay

15 September, 2010

W-line section of transfer line to RHIC

& Matching Helions from AGS to RHIC &

- Without AGS snakes.
- $\frac{p_{inj}}{q} = 55.2 \text{ Tm at } -49.5$ (proton inj: 79.4 Tm).

- With a 14% snake at E20 (warm)
- $G\gamma = -48.5 \text{ and } -49.5 \text{ OK}.$

& Need Polarimetry Development for He³ &

- Equivalent of p+C CNI polarimeters:
 - Possibility of ³He+C CNI polarimeters.
 - T. L. Trueman, "CNI Polarimetry with ${}^{3}\text{He}$ ", arXiv:0710.3380v1 (2007).
 - Can we use the same geometry as for protons?
- Equivalent of H-jet p+p polarimeter for absolute polarization:
 - ³He-jet polarimeter might be feasible. Can we have a good calibration of the jet polarization?
- Must have local (relative) polarimeters at STAR and PHENIX.
- Need to have a workshop on ³He polarimetry for RHIC.

& Summary &

Deuterons very hard in RHIC — perhaps in a figure-8 ring.

✓ He³ looks promising: no real show stoppers.

- Source: ³He⁺² OPPIS source proposal: Milner/Zelenski See Anatoli Zelenski's presentation.
- $|G\gamma|_{\text{max}}$ is higher for He³:
 - More and Stronger resonances in all rings.
- ³He polarimeters need to be developed.
- AGS cold snake may be sufficient at lower field. AGS warm snake (fixed field) might be too strong ($\sim 14\%$).
- AGS injection and extraction spin-matching: not too bad.
 - Booster to AGS may need matching (depends on AGS snakes).
- RHIC snakes and rotators will work with lower fields.
- Lower injection rigidity for RHIC should be OK.
 - Injection orbit excursions reduced.

Backup slides follow

& Accelerator Complex (Pol. Protons)

AGS: Alternating Gradient Synchrotron RHIC: Relativistic Heavy Ion Collider

Machine Advisory Committee Review Waldo MacKay 15 September, 2010

§ Spin precession equations §

• Thomas-Frenkel-BMT equation and Lorentz force (covariant form):

$$\frac{dS^{\mu}}{d\tau} = \frac{e}{m} \left[\frac{g}{2} F^{\mu\nu} + \frac{g-2}{2} \left(F^{\mu\nu} + u^{\mu} F^{\nu\kappa} u_{\kappa} \right) \right] S_{\nu}$$

$$\frac{du^{\mu}}{d\tau} = \frac{e}{m} F^{\mu\nu} u_{\nu}$$

• T-F-BMT in weird hybrid system (fields in lab; spin at rest):

$$\frac{d\vec{S}^{\diamond}}{dt} = -\frac{q}{\gamma m} \left[(1 + G\gamma) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} + \left(G\gamma + \frac{\gamma}{\gamma + 1} \right) \frac{\vec{E} \times \vec{v}}{c^2} \right] \times \vec{S}^{\diamond}$$

$$G = \frac{g - 2}{2}$$

Warning: Need to be very careful with what \perp and \parallel mean.

Anomalous magnetic moment factor

Calculate g from

$$g = \left(\frac{\mu}{\mu_{\rm N}}\right) \times \mu_{\rm N} \times \frac{2M}{Ze\hbar I}.$$
$$G = \frac{g-2}{2}$$

- $\mu = g \frac{Ze}{2M} \hbar I$ where I is the nuclear spin quantum number.
- Nuclear magneton: $\mu_N = e\hbar/2m_p = 31.524512 \times 10^{-9} [eV/T]$
- Masses, \hbar , etc. from NIST 2006 CODATA (http://physics.nist.gov/cuu/Constants/index.html)
- Ratios of magnetic moments to nuclear magneton from N. J. Stone, "Table of nuclear magnetic dipole and electric quadrupole moments", in Atomic Data and Nuclear Data Tables 90, 75 (2005).

&SU(2) group generators in rest system &

Spin-
$$\frac{1}{2}$$
 $(s = \frac{1}{2})$ $\vec{\sigma}$: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ (Pauli matrices)

Spin-1
$$(s = 1)$$
 $\vec{\sigma}$: $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

$$\frac{d\psi^{\diamond}}{d\tau} = \frac{i}{\hbar} \frac{gq}{2m} (\vec{S}^{\diamond} \cdot \vec{B}^{\diamond}) \psi^{\diamond} \qquad \text{with spin operator:} \quad \vec{S}^{\diamond} = \hbar I \vec{\sigma}$$

$$\psi^{\diamond}(\tau) = e^{i\kappa(\vec{B}^{\diamond} \cdot \vec{\sigma})\tau} \psi^{\diamond}(0) \qquad \text{for a constant } \vec{B}^{\diamond}$$

$$\kappa = \frac{gq}{2m} I$$

& Higher spins than spin-1/2 &

T-F-BMT does not cause quantum photon transitions between states.

Protons in RHIC:
$$\tau_{\text{ST}} = 3 \times 10^{12} \text{ yr}; \quad \tau_{\text{ST}} \propto \left(\frac{m}{Z}\right)^2 \gamma^{-5}$$

Spin-1 spinor:
$$\psi = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
; T-F-BMT rotates only a and c components.

• $m_s = 0$ component b remains unaffected.

Spin-3/2:
$$\psi = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

- $m_s = \pm 3/2$ components (a and d) rotate together;
- $m_s = \pm 1/2$ components (b and c) rotate together;
- No radiative transitions between $|m_s| = 3/2$ with $|m_s| = 1/2$.

Formulae for helical dipoles

Parameters for a single RHIC rotator helix [Mike Syphers: SN020]

Pitch:
$$k = \frac{2\pi}{\lambda}$$
, $\lambda = 2.41 \text{ m}$ [+(-) for right(left)-handed]

$$\kappa = \frac{q}{p}(1 + G\gamma)B$$
 (simple analytic scaling ignoring longitudinal field)

$$\Rightarrow \kappa \sim \frac{q}{p}G\gamma B$$
 (with more accurate tracking)

Rotation axis:
$$\hat{r} = \frac{k\hat{z} + \kappa\hat{x}}{\sqrt{\kappa^2 + k^2}}$$

Precession angle:
$$\alpha = 2\pi \left(\sqrt{1 + \left(\frac{\kappa}{k}\right)^2} - 1 \right)$$

Transverse offset:
$$\Delta x = \frac{q}{p} \frac{B\ell}{k} = \frac{q}{p} \frac{\lambda^2}{2\pi} B$$

Scaling Snakes to He³

Scaling of the field at maximum energy:

The maximum rigidity of the beams must the same: $r_{\text{max}} = \frac{p}{q} = 834 \text{ Tm}$

$$(\beta\gamma)_{\rm x} \simeq \frac{Z}{A}(\beta\gamma)_{\rm p}$$

Want the same precession, so κ must be the same.

$$B_{\rm x} \simeq rac{G_{
m p}\gamma_{
m p}}{G_{
m x}\gamma_{
m x}}B_{
m p}$$
 $B_{
m He^3} \simeq rac{AG_{
m p}}{ZG_{
m He^3}}B_{
m p} \simeq -0.643B_{
m p}$

Snake excursion at injection $r_{\rm inj} = 81.1$ Tm (for protons):

$$\Delta y = \begin{cases} 3.2 \text{ cm}, & \text{for protons} \\ -2.1 \text{ cm}, & \text{for He}^3 \end{cases}$$

& Helical Spin Rotators &

The rotation axis of the spin rotator is in the x-y plane at an angle θ from the vertical. The spin is rotated by the angle μ around the rotation axis.

Rotation Angles for a Helical Spin Rotator

Note: Purple contour for rotation into horizontal plane. Black dots show settings for RHIC energies in increments of 25 GeV from 25 to 250 GeV.

& Rotator Axes and Precession

To precess the spin from vertical into the horizontal plane:

$$\sin\beta = \sin\mu\cos\theta$$

$$\cos \mu = -\tan^2 \theta$$

$$\mu \in [90^{\circ}, 270^{\circ}]$$

$$\theta \in [-45^{\circ}, 45^{\circ}] \cup [135^{\circ}, 225^{\circ}]$$

For longitudinal polarization want:

$$\beta = G\gamma \times \theta_{\text{D0DX}}$$

$$\theta_{\mathrm{D0DX}} = 3.675 \mathrm{\ mr}$$

Deuterons in a Figure 8

- JLAB (Derbenev)
- With no snakes $\nu_{\rm sp} = 0$ $\mathbf{R}_{\hat{n}}(\text{full turn}) = \mathbf{I}.$
- Weak snake locks spin.
- At $G\gamma = -19$, the net precession around one arc is $-14\frac{1}{4}$ rotations.
- Switch between red and green snakes to rotate polarization by 90°.
- Any injector ring should also be a figure 8 with partial snakes.

